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Abstract
Bladder cancer is a common disease representing the fifth most diagnosed solid tumor in the United States.

Despite this, advances in our understanding of the molecular etiology and treatment of bladder cancer have

been relatively lacking. This is especially apparent when recent advances in other cancers, such as breast and

prostate, are taken into consideration. The field of bladder cancer research is ready and poised for a series of

paradigm-shifting discoveries that will greatly impact the way this disease is clinically managed. Future

preclinical discoveries with translational potential will require investigators to take full advantage of recent

advances in molecular and animal modeling methodologies. We present an overview of current preclinical

models and their potential roles in advancing our understanding of this deadly disease and for advancing care.

Mol Cancer Ther; 12(2); 121–30. �2012 AACR.

Introduction
Urothelial carcinoma represents the third and eighth

most common solid tumor in men and women, respec-
tively. Theworldwide incidence of urothelial carcinoma is
increasing. As developing countries industrialize and
rates of tobacco use increase, this trend is expected to
continue (1). However, recent advances in the treatment
of bladder cancer are limited. To date, surgery remains
the only curative treatment of organ-confined disease.
Cisplatin-based combination chemotherapy for more
advanced disease is generally not curative and offers a
median survival of approximately 15 months with 5-year
overall survival a dismal 4% to 20% (2). Bladder cancer is
highly chemoresistant upon relapse with no formally
approved second-line agents and a median survival of
only 6 to 9 months (3–5). Numerous chemotherapeutic
and biologics show poor or no activity in the second-line
setting. Increased understanding of themolecular biology
of this disease and identification of new effective thera-
peutic agents is essential.

Before the clinical application of an emerging discov-
ery, T1 translational research can be defined as a 2-step
process: identification of the most clinically challenging
problems and the application of basic science to address
them.While there are numerous small-molecule pharma-
cologic agents with potentially promising anticancer
activity, care must be taken about which models are
chosen to test these compounds to ensure that they prove
relevant to human urothelial carcinoma. With this in
mind, this review will discuss the available preclinical
models of urothelial carcinoma and their potential
applications.

Molecular Biology: Gaps in Knowledge and the
Quest to Develop Personalized Therapy

Urothelial carcinoma is a disease of complex etiology
and biology (reviewed in refs. 6, 7). The clinical manage-
ment of urothelial carcinoma presents an array of chal-
lenges. Relative to other malignancies, we are still in the
early stages of identifying the most important molecular
"drivers" of urothelial carcinoma tumorigenesis and pro-
gression. Therefore, extensive preclinical studies are nec-
essary to identify novel therapeutic targets and to eluci-
date and prioritize the development of suitable antitumor
agents. A detailed description of identified molecular
mechanisms that underlie urothelial carcinoma tumori-
genesis and progression is beyond the scope of this
review. Interested individuals are referred to more com-
prehensive reviews on this subject (8). However, a brief
discussion of major events in this process is germane. It is
currently believed that urothelial carcinoma proceeds
along 2 relatively distinct molecular pathways (reviewed
in ref. 6). Papillary, low-grade tumors are uniformly
superficial and do not progress to invasive lesions.
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However, patients with these tumors are at high risk for
recurrence as well as progression to high-grade disease
in approximately 10% to 15% of cases. Formation of low-
grade lesions is associated with molecular aberrations in
the oncogene RAS, FGFR3, and deletions of 9q, among
others (6). Treatment of low-grade urothelial carcinoma
focuses primarily on adequate tumor resection.

High-grade urothelial carcinoma is associated with
alterations in p53, retinoblastoma (Rb), and PTEN among
others. These tumors also recur with high frequency
but unlike low-grade tumors can progress. Muscle inva-
sive urothelial carcinoma is in fact thought to arise from
superficial high-grade lesions such as carcinoma in situ
(CIS). Clinical management of muscle invasive urothelial
carcinoma centers on cystectomy with neoadjuvant
or adjuvant chemotherapy for selected individuals. The
biology of urothelial carcinoma refractile to surgical
and chemotherapeutic intervention is poorly understood,
and multiple mechanisms may be operative in this
process.

Cell Lines in Urothelial Carcinoma Research
A large number of cell lines are available representing

different grades and stages of urothelial carcinoma, and
reflectmanyof the genetic,morphologic, andgene expres-
sion alterations observed in human urothelial carcinoma.
The most common applications for cell lines include the
studyof in vivo tumorigenicity andmetastases, and in vitro
response to drug treatment. Most studies of urothelial
carcinoma cell lines in vitro are conductedwith cell mono-
layers grown on plastic. While simple and cost-effective,
this approach has limitations. For example, established
cell lines for in vitro use can exhibit metabolic (9) and
pharmacokinetic (10) behavior different from in situ nor-
mal or tumor tissue. In addition, while 3-dimensional
culture systems using extracellular matrix may provide
a more physiologically relevant in vitro model for tumor
dynamics and tumor "ecology" (11), it must be recognized
that urothelial carcinoma tumors are surrounded in situby
supporting mesenchyme, vascular elements, matrix, and
other cell types. However, these limitations can be par-
tially overcome by the use of orthotopic xenografting
approaches, as well as tissue recombination xenografting
(see later). In the current section,weprovide a summaryof
available cell lines, with the data presented being repre-
sentative rather than exhaustive.

Benign urothelial cell lines
"Normal" urothelial cells represent an important con-

trol for urothelial carcinoma research and provide the
opportunity to investigate carcinogenesis in vitro
(reviewed in ref. 12). Initial work was conducted by
Reznikoff and colleagues with documentation of short-
term ureteral explant cultures in standard (high calcium)
medium supplemented with fetal calf serum (13). One
culture of these cells was immortalized with SV40 large
T antigen (SV-HUC), but genetic instability on longer
passages was observed (14). In addition, when these

immortalized cells (which are nontumorigenic at low
passage) were treated with carcinogens, sublines with
increasing tumorigenicity were generated (15). Later,
human papillomavirus (HPV) E6 or E7 were used for
immortalization (16), with HPV E7 yielding more genet-
ically stable cells (16). Urothelial cells immortalized with
HPV-E6/E7 (17, 18) generate differentiatable, immortal-
ized normal urothelial cell lines. Tamatani and colleagues
developed a human urothelial line, 1T1, using this appro-
ach (19). Another immortalized benign urothelial cell line
in use is UROtsa (20), which used a temperature-sensitive
SV40 large T construct. UROtsa cells grow in high calci-
um-definedmedium in the absence of fetal calf serum (21),
resulting in stratification and expression of tight and gap
junctions. UROtsa has been used to evaluate responses to
arsenic, a known bladder carcinogen (22). Others have
used human telomerase reverse transcriptase (hTERT)
immortalization (23). The advantage of hTERT immortal-
ization is lack of interference with p53 and Rb, as occurs
with SV40 large T or HPV E6/E7 (24, 25). However,
additional studies show hTERT immortalized cells also
have significant genetic changes at higher passage (26).

Recently, normal (nonimmortalized) urothelial cell cul-
tures have been established using defined, low calcium,
serum-free medium (27). These cells have characteristics
of poorly differentiated urothelial cells but retain a more
cobblestone appearance (in contrast to SV-HUC, which
appear more fibroblastic) and showed antigenic differ-
ences fromCIS cells. Urothelial cell cultures established in
low calcium, serum-free medium can be induced to dif-
ferentiate by the addition of calcium alone, serum, or by
troglitazone (PPAR-g) and PD153035 (EGF receptor inhib-
itor) resulting in stratification, E-cadherin expression, and
assembly of functional tight junctions (12, 28, 29). While
recognizing the limitations of each type of model, these
lines can be useful as "normal" or benign control cells or to
study effects of genetic changes.

Malignant (urothelial carcinoma) cells and cell lines
Bladder cancer cells, either isolated or as explants, have

been maintained in short-term cultures for study (30).
However, most of these cultures will fail in culture over
time, reaching the Hayflick limit (31). However, many
human urothelial carcinoma immortalized cell lines are
available. Two originated from low-grade papillary
urothelial carcinoma and have retained well-differentiat-
ed characteristics. Thefirst, RT4, is aPTEN,uroplakin, and
E-cadherin–positive cell line with wild-type p53 and
grows slowly in culture forming small raised "islands"
(32). RT4 is a mainstay of urothelial carcinoma culture
models as the representative of low-grade disease. A
second line, RT112, also retains many differentiated char-
acteristics (33). This cell line is not widely available in the
United States but is inuse inEurope andAsia.A third low-
grade line, UM-UC9, has some differentiated character-
istics such as slow growth and expression of AN43/
uroplakin but lacks others, including expression and cell
contact assembly of E-cadherin (34, 35). These lines are
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ideal candidates to identify and study molecular events
that differentiate low from high-grade disease.
Numerous cell lines originating from high-grade/

advanced-stage urothelial carcinomas are also available.
These cells vary in morphology, mutations/deletions,
epithelial/mesenchymal characteristics, growth as xeno-
grafts in immunodeficient mice, and other characteristics
such as metastatic potential (Table 1). When choosing a
cell line to model urothelial carcinoma behavior, it is
essential that individuals take into account the advantages
anddisadvantages of cell lines used for subcutaneous and
orthotopic studies (10). A resource for information on
genetic alterations in these cell lines is the Catalog of
Somatic Mutations in Cancer (COSMIC) at the Sanger
Institute (Cambridge, United Kingdom; ref. 36).

Urothelial carcinoma cell line misidentification
While the plethora of urothelial carcinoma cell lines

allows extensive genetic, morphologic, and functional
studies, as well as elegant modeling, there exists an
ever-present risk of cell line cross-contamination.
Although HeLa cells are notorious contaminants of var-
ious cultures, T24 also behaves in a similar manner (37–
39). TheAmerican TypeCulture Collection (ATCC) docu-
ments their standard lines using DNA fingerprinting, or
short tandem repeat (STR) profiling (38, 39). The Health
Protection Agency in the United Kingdom supports a list
of misidentified cells (40). While the ATCC currently
maintains their database, it only covers the few urothelial
carcinoma cell lines they distribute, and therefore, docu-
mentation of an STR profile consistent with urothelial
origin is essential. The importance of reliable STR is
especially clear when it is recognized that uroplakin and
keratin expression can be lost in a subset of urothelial
carcinoma, making definitive identification of urothelial
origin difficult. While these requirements seem intensive,
assurance that research is being conducted on appropriate
models is essential.

In Vivo Systems Using Urothelial Carcinoma Cell
Lines
Orthotopic murine xenograft models
Orthotopic models for urothelial carcinoma research

involve the injection of urothelial carcinoma cells into a
host bladder. These models allow for the study of cancer
cell behavior within the normal host tissue microenviron-
ment. Technically, single cell suspensions of human
urothelial carcinoma cell lines are directly injected into
thewall of the bladder of immune-compromisedmice via
an open abdominal incision or injected into the bladders
following catheterization, which requires chemical or
mechanical traumatization of the bladder mucosa (41).
Mice are monitored with serial examinations for hema-
turia or a palpable mass or with various imaging techni-
ques to identify growing lesions (42–45).Aswith all in vivo
models, this approach has limitations. For example,
experiments designed to identify specific immune
responses to therapy cannot be carried out in immune-

deficient mice (46), the time frame permitted for the study
of metastasis is limited because of death from ureteral
obstruction by primary tumors and the sites of metastases
donot fully reflect the spectrumof organ tropism typically
seen in human urothelial carcinomas such as the high
incidence of bone metastasis (47).

Metastatic models
Most deaths from urothelial carcinoma are caused by

metastatic spread to distant organs, including bone, lung,
and liver (7, 47). Highly metastatic variants of urothelial
carcinoma cell lines have been isolated through repeated
rounds of in vivo selections from metastatic nodules. The
route of cell inoculation into host animals (i.e., orthotopic,
intracardiac, or tail vein injection) influences thepattern of
metastases and the equipment available tomonitormetas-
tases dictates experimental design (43, 48–50). The devel-
opments of nearly isogenic variants with low and high
metastatic potential are valuable resources for the iden-
tification and validation of candidate metastasis genes.
For example, sublines established from bone metastasis
of TSU-Pr1-B1 and -B2 displayed significantly increased
metastatic proclivity to bone and expressed elevated
level of matrix metalloproteinases (MT1-MMP, MT2-
MMP, MMP-9, and fibroblast growth factor receptor 2;
refs. 51, 52) and prominent epithelial features, in contrast
to themoremesenchymal-like parental cells, suggesting a
functional role of mesenchymal–epithelial transition in
metastatic colonization (53). Multiple isogenic series of
lung-metastatic cell lines have also been established for
urothelial carcinoma. Lung-tropic sublines (MGH-U1-m/
F1 and theT24T-FL1, Fl2, Fl3 series; refs. 48, 54) of theT24T
series of lung-metastatic cells and theparental T24 cell line
led to the identification of a novel metastasis suppressor
RhoGDI2 and the association of elevated expression of
epiregulin, urokinase-type plasminogen activator (uPA),
MMP14 and TIMP-2 with increased risk of lung metas-
tasis (48, 55).

Development of additional metastatic progression sub-
lines from human and mouse bladder carcinomas and
integration of more sophisticated genomic, proteomic,
andbioinformatic analyticmethodsmay lead todiscovery
and validation of urothelial carcinoma metastasis
genes and signaling pathways. Furthermore, genes iden-
tified in functional genomic analysis of animal models
need to be tested for their prognostic and therapeutic
values using the large collection of microarray profiling
data that have been collected from human urothelial
carcinoma samples (56, 57).

Murine Models of Bladder Cancer
Genetically engineered mouse models

The development of Genetically engineered mouse
models (GEMM) has beenmade possible by the discovery
of uroplakins, a group of integral membrane proteins
largely restricted to urothelial cells (58, 59). Oncogenic
alterations introduced into mouse urothelium under the
control of mouse uroplakin II (UPII) promoter include
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SV40 largeT antigen (60), activatedHa-ras (61), dominant-
negative p53 (62), and EGF receptor (63). In addition, the
development of a UPII-driven Cre strain (64), has allowed
the removal of loxP-flanked tumor suppressors from
mouse urothelium, such as p53 and/or pRb (65). Awealth
of information, some leading to paradigm-changing con-
cepts, has been obtained from these transgenic and knock-
out studies. These include the molecular definition of the
divergent phenotypic pathways of urothelial carcinoma
(6), the biologic potential of genetic alterations in initiating
bladder tumors (65–67), the unique context of urothelium
in tumorigenesis (68, 69), the critical roles of oncogene
dosage in dictating whether and when urothelial tumors
arise (60, 61) and the identification of molecular targets
that are strongly associated with urothelial carcinoma
formation and progression for therapeutic intervention
(61).
Despite the caveat that tumors arise from murine and

not human cells, the fact that GEMMs harbor well-
defined, initial genetic alterations is a strength making
GEMMs an invaluable tools for therapeutics testing. Giv-
en that bladder tumors develop and evolve in theGEMMs
in their naturalmicroenvironment endowedwith a tumor
vasculature, epithelial–stromal signaling and tumor–
immune cell interactions, therapeutic responses in
GEMMS may have higher predictive value than other
model systems.
In addition, tumor formation kinetics and progression

in GEMMs are in general highly predictable, making it
easy to pinpoint the specific effects of tumor inhibition.
GEMMs, in particular transgenic models, can be made in
in-bred strains, thus minimizing the effects of divergent
genetic backgrounds on drug metabolism, tumor
response, and drug resistance. Existing GEMMs exhibit
the entire spectrum of tumor evolution from precursor
lesions, to benign lesions, to full-fledged tumors and
invasion and metastases. Therapeutic as well as preven-
tive strategies can therefore be tailored to target different
stages of tumor development (68).
Although GEMMs have been underused for evaluating

drug targets and efficacy, the situation is expected to
rapidly improve with the increasing awareness of their
availability, the understanding of their pivotal role in
novel therapeutic testing and the continued refinement
of these models to the extent that they faithfully represent
the human counterpart. The recent development of tetra-
cycline-inducible and urothelium-specific gene and
knockout systems should offer considerable flexibility for
the next-generation of urothelial carcinoma models (70).

Chemically induced carcinogen models
De novo urothelial carcinoma can be induced predom-

inantly in rodents with the use of several chemical carci-
nogens. Themajority of these agents have aromatic amine
components. Themost widely used carcinogen belongs to
the nitrosamine family being N-butyl-N-(4-hydroxybu-
tyl)-nitrosamine (BBN). BBN is the carcinogen of choice,
given its lack of systemic toxicity and exclusive develop-

ment of urothelial carcinoma (71). BBN, a viscous yellow
emulsion, is administered orally, by gavage or as an
emulsion in drinking water, and degraded to N-butyl-
N-(3-carboxypropyl)-nitrosamine, which has proven car-
cinogenic effects on the bladderwhen cleared in the urine.
In mice pathologic findings, in sequence are intense sub-
mucosal inflammation followed by dysplasia, with or
without varying degrees of urothelial metaplasia, then
CIS and invasive tumors (72). Metastasis is not typically
seen as animals die from obstructive uropathy before
spread. When given to rats, the findings are similar,
however, the resultant pathology is almost exclusively,
low-grade, noninvasive papillary disease. The duration of
treatment ranges from 4 to 25 weeks, with some strains
showing shorter (A/Jax; ref. 73) and others longer (CD-1;
authors experience) periods for tumor development. Giv-
en the genetic andpathologic similarity to human disease,
this model represents an adequate system to study corre-
lates of human urothelial carcinoma. As such it is well
suited to study the impact of specific genes on the devel-
opment of tumors with the use of transgenic knockout
mice (74) and to evaluate the antitumorigenic activity of
various agents (75–77).

Adenovirus delivery of transgeneorCre recombinase
to rodent urothelium

Another method to study the contribution of altered
urothelial gene expression during the development and
progression of urinary bladder urothelial carcinoma is
through the use of adenovirus-mediated gene delivery.
This involves catheterization of female rodents (prostate
anatomy with difficult catheterization precludes the use
of male mice) to deliver adenovirus encoding a gene of
interest into the bladder. Following viral delivery and
subsequent viral transduction of urothelial cells, tissue
can be harvested at appropriate time points and analyzed
(78). Advantages of this approach include the ability to
deliver a transgene (79, 80) or a virus encoding Cre
recombinase for deletion of rodent genes flanked by
flox/flox sites (78), and the relative low cost of this in
vivo approach. Disadvantages of adenovirus-mediated
gene delivery into the urinary bladder include incomplete
transduction of the urothelium and, depending on trans-
duction efficiency, long latency time required for pheno-
type development. However, pretreatment detergents
such as dodecyl-b-D-maltoside (DDM) and SDS have
been identified (80) that greatly enhance viral transduc-
tion efficiency perhaps by disrupting/disabling these
structures.

Mixed Models
Tissue recombination

Cancer is a disease of pathologic alterations in tissue
architecture whose precise nature has significance in
terms of disease progression (8). Physiologically relevant
tissue recombination models offer an advantage over
in vitro cell culture systems because they enable the
determination of the influence of the microenvironment
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and the discovery and impact of molecular alterations on
tumor growth, and the activity of novel therapeutic
interventions.

For bladder studies, tissue recombination involves the
isolation of embryonic bladder mesenchyme (EBLM)
from animals and subsequent recombinationwith human
or murine urothelial carcinoma cells (81), transgenic
urothelium, or benign but genetically manipulated
urothelial cells. Following recombination, tissue grafts
are inserted under the kidney capsule of either
immune-compromised or syngeneic hosts and harvested
at specific times for analysis (81). One of the major
strengths of tissue recombination is the recapitulation of
normalmultilayeredbladder transitional epithelium indi-
cating relatively restricted lineage commitment and sub-
sequent differentiation. However, its use in the study of
urothelial carcinoma has been surprisingly limited, prob-
ably because of a limited number of benign urothelial or
urothelial carcinoma cell lines potentially suitable for use
(see cell line section). Thus, most human urothelial carci-
noma cell lines (with exceptions, such as RT4, SV-HUC,
RT112, and UM-UC9) would be difficult to use for the
identification of pathways that induce tumor progression
as high-grade, late-stage tumors have usually progressed
beyond the point of response to inductive mesenchyme,
resulting in the inability to permit the formation of recom-
binants with any tissue architecture. Therefore, while
tissue recombination with benign urothelial components
enables us to identify perturbations that promote urothe-
lial carcinomaprogression, it is unlikely that highlymalig-
nant urothelial carcinoma cell lines would be capable of
responding in such a manner.

One cell that is suitable for use in tissue recombination
experiments is the RT4 line. In a recent study, RT4 cells
were used in tissue recombination experiments to explore
the implications of the discovery that p53 alterations and
PTEN loss occur in urothelial carcinoma and are signi-
ficantly associated with poor clinical outcome (78). We
recently reported our use of the tissue recombination
system to determine the influence of decreased FOXA1
expression for urothelial tumorigenicity (82). FOXA1
expression is detected in normal urothelium, and the pre-
sence of FOXA1 expression is correlated with urothelial
differentiation, suggesting a potential role for FOXA1 loss
in bladder tumor initiation and/or tumor progression
(reviewed in ref. 8). Interestingly, FOXA1 losswasdetected
in 40% of urothelial carcinoma and 80% of squamous cell
carcinoma and in keratinizing squamous metaplasia, a
precursor to squamous cell carcinoma.We showedFOXA1
expression was significantly diminished with increasing
tumor stage. To determine the influence of decreased
FOXA1 expression on bladder cancer cell proliferation,
we conducted tissue recombination experiments with RT4
cells engineered to exhibit decreased FOXA1 expression.
Resulting recombinants exhibited significantly increased
RT4 proliferation and tumor volume. Therefore, the tissue
recombination technique can allow researchers to perturb
a system, verify the influence of this perturbation on the

tissue microenvironment, and to pursue potential mecha-
nistic studies important for tumor progression.

Another major defining strength of the tissue recombi-
nation model is the ability to use genetically manipulated
EBLM derived from transgenic mice for tissue recombi-
nation, which can influence urothelial carcinoma growth
(83, 84). Therefore, as studies of the tumor microenviron-
ment become increasingly important, EBLM isolated from
transgenic mice, and applying approaches used in the
study of prostate differentiation and tumor progression
through the isolation of transgenic urogenital sinus mes-
enchyme (85, 86), is certain to aid in the future identifi-
cation of important stromal targets for cancer therapy.

Primary human tissue xenografts
One model that does not suffer from the drawbacks of

using cell lines passaged in vitro for decades, coupledwith
the issue of cell line cross-contamination, involves the
subcutaneous xenografting of primary human tumor tis-
sues from patients. This involves placing tumor tissue in
an immune-compromisedmouse,whichuses stromal and
angiogenic contributions from the mouse to foster tumor
growth. This process can also be applied in a tissue
recombination setting using rodent or human smooth
muscle components.

Drawbacks of the use of primary human tissue xeno-
grafts include (i) the subcutaneous take rate for a given
urothelial carcinoma, whereas much better than that seen
in many other tumor types, is only approximately 35%
(87) and is dependent on multiple poorly characterized
intrinsic and environmental factors; (ii) drawbacks about
use of a immunocompromised host and finite ability to
serially transplant tumors; (iii) heterogeneous nature of
human genetics, requiringmodest increase in the number
of replicates for statistical comparison; (iv) the time to
tumor establishment may be long; (v) issues inherent to
subcutaneous xenografting experiments, such as host
infiltrate and poor pharmacokinetics for therapeutic
experiments. Therefore, primary human xenografts may
be less ideal for preliminary studies aimed at determining
the underlying molecular mechanisms behind a particu-
lar process, but better suited for determining the response
of human tumors to novel treatments and/or the role of an
identifiedprotein/molecule in clinical applications.How-
ever, He and colleagues (88) showed that a primary
human tissue xenograft showed a similar differentiation
pattern, as assessed by conventional histopathologic anal-
ysis and immunohistochemical staining, to an established
cell line (SW780), suggesting that theremay not always be
an advantage to using primary tissue.

Conclusions and Future Directions
When appropriately used, preclinical models increase

our understanding of human disease and enhance all
aspects of translational research. Over the past decades,
multiple models have been developed to studymalignant
disease, which now affords us ways to address the most
clinically relevant problems in urothelial carcinoma. In
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addition, preclinical models of urothelial carcinoma also
provide the tools needed to further understand cellular
biochemistry that will reveal new clinical targets. The
caveat is that preclinical systems, while they provide
guidance, cannot completely capture the clinical path of
cancer inhuman subjects, andultimatelywill need clinical
validation.
Although urothelial carcinoma is a leading cause of

cancer-related deaths, and remains an important public
health concern worldwide, research funding directed
toward increased understanding of the molecular fac-
tors that influence the biology of this malignancy is
relatively low. Accordingly, research progress in this
area has lagged far behind that being achieved in other
cancers. Recent data including unexpected results from
GEMMmodels (65), indicates a need for renewed efforts
to identify alternative/additional genetic defects driv-
ing bladder tumor formation and progression. New
imaging technologies for animal models, therapeutic
compounds, and existing models covering the spectrum
of human urothelial carcinoma characteristics should
foster significant progress in the coming years. While a
number of oncogenic molecules are being targeted, a
single critically important target has not emerged. Fur-
ther preclinical research into the fundamental biology
of urothelial carcinoma will yield better targets and

facilitate rational and personalized therapy even in
early clinical trials.
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